Thursday, June 16, 2011

Combined effects of novel heat shock protein 90 inhibitor NVP-AUY922 and nilotinib in a random mutagenesis screen

Oncogene 30, 2789-2797 (16 June 2011) | doi:10.1038/onc.2011.3

To overcome imatinib resistance, more potent ABL tyrosine kinase inhibitors (TKIs), such as nilotinib and dasatinib have been developed, with demonstrable preclinical activity against most imatinib-resistant BCR–ABL kinase domain mutations, with the exception of T315I. However, imatinib-resistant patients already harboring mutations have a higher likelihood of developing further mutations under the selective pressure of potent ABL TKIs. NVP-AUY922 (Novartis) is a novel 4,5-diaryloxazole adenosine triphosphate-binding site heat shock protein 90 (HSP90) inhibitor, which has been shown to inhibit the chaperone function of HSP90 and deplete the levels of HSP90 client protein including BCR–ABL. In this study, we investigated the combined effects of AUY922 and nilotinib on random mutagenesis for BCR–ABL mutation (Blood, 109; 5011, 2007). Compared with single agents, combination with AUY922 and nilotinib was more effective at reducing the outgrowth of resistant cell clones. No outgrowth was observed in the presence of 2 μM of nilotinib and 20 nM of AUY922. The observed data from the isobologram indicated the synergistic effect of simultaneous exposure to AUY922 and nilotinib even in BaF3 cells expressing BCR–ABL mutants including T315I. In vivo studies also demonstrated that the combination of AUY922 and nilotinib prolonged the survival of mice transplanted with mixture of BaF3 cells expressing wild-type BCR–ABL and mutant forms. Taken together, this study shows that the combination of AUY922 and nilotinib exhibits a desirable therapeutic index that can reduce the in vivo growth of mutant forms of BCR–ABL-expressing cells.

No comments:

Post a Comment