4-Previously, Dr. Sullivan and her collaborators demonstrated that the prime-boost strategy produces a strong antibody response in monkeys. More importantly, the experimental vaccine induces a robust reaction by the cellular arm of the immune system. The cellular arm includes T cells, which help orchestrate the overall immune response.
5-However, developing one vaccine to protect against multiple Ebola virus species poses a challenge, she says. To the antibody-producing arm of the immune system, each species looks different. Neutralizing antibodies that recognize one Ebola species cannot readily recognize, or cross-neutralize, the others. T cells, in contrast, can cross-react, even when the target viruses share only small pieces in common.
6-After the emergence of Bundibugyo ebolavirus (BEBOV) in 2007, Dr. Sullivan’s team decided to revisit the prime-boost vaccine regimen to see if the cellular immunity generated would confer protection against the new virus species.
7-Four cynomolgus macaques received the DNA prime vaccine.A year later, the animals were boosted with the vector vaccine. Shortly after the boost, the four vaccinated monkeys and four unvaccinated ones serving as controls were exposed to lethal levels of BEBOV. All the unvaccinated animals became ill, and three died. None of the vaccinated animals showed any sign of illness. Analysis showed that the vaccinated monkeys developed T-cell responses sufficient to prevent or control infection by the novel Ebola virus species, even though the vaccine did not contain material from BEBOV and no antibodies against BEBOV were produced. The animal study was conducted in maximum-level biosafety containment laboratories at U.S. Army Medical Research Institute of Infectious Diseases.
For more information on NIAID research on Ebola and other hemorrhagic fever viruses, visit NIAID's Ebola/Marburg portal.
No comments:
Post a Comment